Polymer Science and Engineering

"I am inclined to think that the development of polymerization is perhaps the biggest thing that chemistry has done, where it has had the biggest effect on everyday life"

-Lord Todd,1980

Ethylene Polyethylene
$$CH_2=CH_2$$
 Magic? $[-CH_2-CH_2-]_n$

A Useful Classification

USE	NATURAL	SYNTHETIC
Fibers	Wool, Silk,	Nylon, PET,
	Cellulose	Lycra®
Elastomers	Natural Rubber,	SBR, Silicones,
	Elastin	Polybutadiene
Plastics	Gutta Percha,	Polyethylene,
	DNA,	Polypropylene,
	Polypeptides	Polystyrene
Composites	Wood,	Polyester/Glass,
	Bone,	Carbon Fiber/Epoxy
	Teeth	Formica
Adhesives	Barnacles!	Elmer's "Glue-All"
		Super-Glue
Paints	Shellac	Acrylics

Historical Background

NATURAL POLYMERS

- used throughout recorded history

SYNTHETIC POLYMERS

- initially chemically modified natural polymers

RUBBERS OR ELASTOMERS

- unique materials, both natural and synthetic

Historical Background

Natural Polymers

NATURAL POLYMERS - - used throughout recorded history

on the hoof

Better hope your garden never looks like this

Cotton

Nitrated Cellulose

Explosive Stuff!

Nitroglycerin

Some Basic Chemistry: Atoms and Bonding

Metallic

Some Basic Chemistry: Single and Double Bonds

Some Basic Chemistry: Functional Groups

$$\begin{array}{c} \textbf{CH_2=CH_2} \\ Ethylene \\ \\ \textbf{R-OH} + \textbf{R-C-OH} \\ Alcohol & Carboxylic Acid \\ \\ \textbf{R-NH_2} + \textbf{R-C-OH} \\ Amine & Carboxylic Acid \\ \end{array}$$

Functional Groups are small groups of atoms held together in a specific arrangement by covalent bonds. They are responsible for the principle chemical properties of the molecule in which they are found.

Condensation Reactions

Why do Molecules React?

Why do Molecules React?

$$HO \cdot + \cdot H \longrightarrow HO : H \sim H_2O$$

$$O \qquad O \qquad | \qquad O \qquad | \qquad |$$

$$CH_3 - C \cdot + \cdot O - CH_2 - CH_3 \longrightarrow CH_3 - C : O - CH_2 - CH_3$$

This isn't what really happens, but shows you how the valency electrons get rearranged

Making a Polymer

If we heat acetic acid and ethanol up to just over 100°C, to get the reaction going and drive off water, why don't we form polymer?

Explosive Stuff!

Nitroglycerin

Guncotton and Collodion

Guncotton and Collodion

Parkes and Parkesine

He wasn't this miserable.

The Crystal Palace

Hyatt and the Elephants

Celluloid

What a sales pitch

Chardonnet and Mother-in-Law Silk

Regenerated Cellulose Cellophane and Rayon

More Cellophane

Rayon

Baekeland and Bakelite

Bakelite - Material of a Thousand Uses

A Bakelite camera

Clock made of a phenolic resin and celluloid

A Bakelite telephone

A Bakelite microphone

Network Formation

The hydrogens in the ortho and para positions to the OH group, which by convention are not usually shown but here are indicated by a *, can react with fomaldehyde to form (initially) oligomers.

A Condensation Reaction!

Network Formation

Continued reaction builds up a densely cross-linked network. This is Bakelite, a thermosetting polymer. Once the reaction is complete, the material cannot be reheated and reformed. So, what do you think the definition of a thermoplastic is?

NEXT; Staudinger and the Macromolecular Hypothesis

